Course Code: 20MC9103

SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Operating Systems & 20MC9103 Course & Branch: M.C.A

Year & Sem: I - M.C.A & I - Sem Regulation: R20

UNIT – I Operating System Overview & Operating System Structure

1	a) What are the objectives of operating systems?b) Explain about the functions of operating system.	[L1][CO1] [L2][CO1]	[6M] [6M]
2	Illustrate different kinds of services provided by operating systems.	[L3][CO1]	[12M]
3	a) Define about system calls.b) Briefly discuss about various types of system calls.	[L1][CO1] [L2][CO1]	[6M] [6M]
4	a) What are the challenges of designing in operating system?b) How can you design & implement of operating systems?	[L1][CO1] [L2][CO1]	[6M] [6M]
5	Describe in detail about the evolution of operating systems.	[L2][CO1]	[12M]
6	a) Organize and explain Computer System Architecture.b) Write about operating system structure.	[L4][CO1] [L1][CO1]	[6M] [6M]
7	a) What are the system programs in operating system?b) Explain in detail about OS services?	[L1][CO1] [L2][CO1]	[6M] [6M]
8	a) Explain about operating system structure.b) Explain about operating system operations.	[L2][CO1] [L2][CO1]	[6M] [6M]
9	a) Write a brief description on operating system designing.b) Briefly write about operating system implementation.	[L6][CO1] [L2][CO1]	[6M] [6M]]
10	Explain the following. a) System Calls b) System Programs	[L2][CO1] [L2][CO1]	[6M] [6M]

UNIT – II

Process Management, CPU Scheduling and Process Coordination

1	a) Define process in process management.b) Explain different process state with neat diagram.	[L1][CO2] [L5][CO2]	[6M] [6M]
2	a) Write about process control block in detailed.b) Discuss about context switch and dispatcher.	[L6][CO2] [L5][CO2]	[6M] [6M]
3	What is a thread? Discuss about various kinds of thread scheduling.	[L1][CO2]	[12M]
4	Evaluate various CPU scheduling algorithm for the following processes	[L6][CO2]	[12M]
	Process P0 P1 P2 Burst Time 24 3 3 Arrival Time 0.0 1.0 2.0		
5	a) What is mean by process synchronization?b) Discuss in detail about classic problems of synchronization.	[L1][CO2] [L2][CO2]	[6M] [6M]
6	a) Analyze critical section problem in detailb) Discuss about Peterson's solution.	[L4][CO2] [L2][CO2]	[6M] [6M]
7	a) What is Semaphore and explain in detail.b) How the monitors are used in process synchronization?	[L1][CO2] [L2][CO2]	[6M] [6M]
8	a) Explain in detailed about scheduling queues.b) How the Schedulers are assigned in CPU scheduling.	[L2][CO2] [L5][CO2]	[6M] [6M]
9	a) Explain multiple processor scheduling.b) Differentiate between real-time scheduling and thread scheduling.	[L2][CO2] [L4][CO2]	[6M] [6M]
10	a) Explain about preemptive scheduling.b) Discuss about scheduling criteria in detail.	[L2][CO2] [L2][CO2]	[6M] [6M]

UNIT – III

Memory Management & Virtual Memory

1	Write short notes of the following. a) Contiguous Allocation b) Swapping	[L1][CO3] [L1][CO3]	[6M]
2	a) Explain about case studies of Linux and Windows.b) Examine various memory management technique in detail.	[L2][CO3] [L4][CO3]	[6M] [6M]
3	a) Write a brief description on Logical & Physical Address Space.b) Briefly explain about demand paging.	[L1][CO3] [L2][CO3]	[6M] [6M]
4	a) Explain about the structure of the page table.b) Identify various page replacement algorithms.	[L2][CO3] [L4][CO3]	[6M] [6M]
5	a) Write a brief description on Segmentation with Paging.b) Explain about performance of demanding paging.	[L2][CO3] [L2][CO3]	[6M] [6M]
6	a) Briefly explain about Virtual memory.b) Discuss about the case study of Linux	[L2][CO3] [L2][CO3]	[6M] [6M]
7	a) Briefly explain about demand paging in detail.b) Discuss about the case study of Windows.	[L2][CO3] [L2][CO3]	[6M] [6M]
8	Analyze any one of the page replacement algorithm with suitable example.	[L4][CO3]	[12M]
9	a) What is segmentation with example?b) Write a brief description on segmentation technique.	[L1][CO3] [L2][CO3]	[6M] [6M]
10	a) Explain about allocation of Frames.b) Elaborate the content of Thrashing.	[L2][CO3] [L2][CO3]	[6M] [6M]

UNIT – IV <u>Mass Storage Structure & File System Interface</u>

1	a) Discuss about mass storage structure.b) Explain about disk structure in detail.	[L2][CO4] [L2][CO4]	[6M] [6M]
2	a) Discuss about various disk scheduling in detail.b) Briefly explain about disk management.	[L2][CO4] [L2][CO4]	[6M] [6M]
3	a) What is RAID structure with example?b) Explain RAID application's in present era?	[L1][CO4] [L2][CO4]	[6M] [6M]
4	a) How do you use stable storage?b) Explain tertiary storage structure in detail.	[L2][CO4] [L2][CO4]	[6M] [6M]
5	a) Define file with example.b) Explain different file accessing methods.	[L1][CO4] [L2][CO4]	[6M] [6M]
6	a) Explain various directory structures.b) Discuss about swap space management.	[L2][CO4] [L2][CO4]	[6M] [6M]
7	a) Briefly discuss about file sharing.b) Explain about protection in file sharing.	[L2][CO4] [L2][CO4]	[6M] [6M]
8	a) Analyze file system implementation methods.b) Elaborate the content of efficiency and performance.	[L4][CO4] [L2][CO4]	[6M] [6M]
9	a) Generalize and discuss on directory implementation.b) Explain about file system mounting.	[L6][CO4] [L2][CO4]	[6M] [6M]
10	a) Discuss about free space management.b) Contrast the case studies of Linux & Windows.	[L2][CO4] [L2][CO4]	[6M] [6M]

Course Code: 20MC9103

UNIT – V Deadlocks & Protection

1	a) What is deadlock with clear example?b) Explain methods for handling deadlocks.	[L1][CO5] [L2][CO5]	[6M] [6M]
2	a) What are the necessary conditions of a deadlock?b) Explain in detail about deadlock prevention methods.	[L1][CO5] [L2][CO5]	[6M] [6M]
3	a) Analyze various resource allocation graph.b) How to avoid the deadlock when it was happened.	[L4][CO5] [L2][CO5]	[6M] [6M]
4	a) Explain about language based protection.b) How can you identify the program threats? Explain briefly?	[L2][CO5] [L2][CO5]	[6M] [6M]
5	a) Apply banker's algorithm for deadlock avoidance.b) How can you explain the cryptography as a security tool?	[L3][CO5] [L2][CO5]	[6M] [6M]
6	a) Explain about deadlock detection algorithm in detail.b) Briefly discuss about firewalling to protect systems and networks.	[L2][CO5] [L2][CO5]	[6M] [6M]
7	a) Discuss about deadlock recovery technique.b) Illustrate about computer security classifications.	[L2][CO5] [L3][CO5]	[6M] [6M]
8	a) Discuss the goals of protection and principles of protection in detail.b) Explain briefly about user authentication techniques.	[L2][CO5] [L2][CO5]	[6M] [6M]
9	a) Write about domain protection and Principles of Protection.b) Discuss about system and network threats.	[L1][CO5] [L2][CO5]	[6M] [6M]
10	a) Discuss language-based protection.b) Briefly explain about revocation of access rights & capability based systems.	[L2][CO5] [L4][CO5]	[6M] [6M]

PREPARED BY: Mr.P.Balaji, Assistant Professor, Dept. of MCA, SIETK, Puttur.